If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2)-(18x)+(7)=61
We move all terms to the left:
(3x^2)-(18x)+(7)-(61)=0
We add all the numbers together, and all the variables
3x^2-18x-54=0
a = 3; b = -18; c = -54;
Δ = b2-4ac
Δ = -182-4·3·(-54)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{3}}{2*3}=\frac{18-18\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{3}}{2*3}=\frac{18+18\sqrt{3}}{6} $
| 2x=-10x | | 2/5x-16=1/3x | | 4(x-3)=6-2 | | 5+4x9=149 | | 3x-8+11=12 | | 55-44n=35-42n | | 8x-3=3x+17x | | 14+(x)=6 | | -3=p+12 | | 8-3*(j-7)=-3*(2-j)-j | | 8-3*(j-7)=-3(2-j)-j | | 23-x/5=13 | | 3x-2x+6=10 | | 5z-8z=9 | | 4a+7=5a+2 | | 8+1=3x+20 | | 6x–9=2x+3 | | 25x²+15x–50=0 | | 5x-7=5x-55 | | 6x(5x-3)=522 | | 10x⅚=N | | 0=16+4t-24 | | 4x-6x=80 | | 4m+12=-16 | | 2p+10-6=4p-12 | | 4(2x=13)=18 | | 13t-14=3t+169 | | 20b-2=34 | | -1=r-10/14 | | 2x–17=15 | | (x-4)(x+11)=0 | | 8x–15+2x=25 |